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Abstract—The unit-modulus least squares (UMLS) problem
has a wide spectrum of applications in signal processing, e.g.,
phase-only beamforming, phase retrieval, radar code design, and
sensor network localization. Scalable first-order methods such as
projected gradient descent (PGD) have recently been studied as
a simple yet efficient approach to solving the UMLS problem.
Existing results on the convergence of PGD for UMLS often
focus on global convergence to stationary points. As a non-convex
problem, only a sublinear convergence rate has been established.
However, these results do not explain the fast convergence of
PGD frequently observed in practice. This manuscript presents
a novel analysis of convergence of PGD for UMLS, justifying the
linear convergence behavior of the algorithm near the solution.
By exploiting the local structure of the objective function and the
constraint set, we establish an exact expression for the conver-
gence rate and characterize the conditions for linear convergence.
Simulations show that our theoretical analysis corroborates
numerical examples. Furthermore, variants of PGD with adaptive
step sizes are proposed based on the new insight revealed in our
convergence analysis. The variants show substantial acceleration
in practice.

Index Terms—Unit-modulus least squares, projected gradient
descent, linear convergence analysis.

I. INTRODUCTION

UNIT-modulus least squares (UMLS) is formulated as the
following optimization problem:

min
w∈CN

1

2
∥Φw − h∥2

s.t. |wi|2 = 1 for i = 1, . . . , N, (1)

where Φ ∈ CM×N and h ∈ CM . This problem arises in
numerous machine learning and signal processing applications
including, but not limited to, phase-only beamforming [1], [2],
phase recovery [3], radar code design [4], [5], sensor network
localization [6], and edge computing [7] (see Section II-A for
further details).

It is well-known that UMLS is a non-convex NP-hard
problem [8]. One traditional approach to this problem is semi-
definite relaxation (SDR). In [9], Luo et. al. recast (1) as
a quadratically constrained quadratic programming (QCQP)
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problem and then lifted it to an N2-dimensional problem
with a rank-1 constraint. By dropping the non-convex rank
constraint, the resulting problem is convex and can be solved
via interior point methods. The major disadvantage of SDR is
the high computational complexity (O(N7) flops and O(N2)
memory units), which is not suitable for large-scale problems
in modern applications. Another approach that has recently
been proposed by Tranter et al. [1] is projected gradient
descent (PGD). Since the projection onto the unit-modulus
manifold is simple and low-cost, PGD is shown to be efficient
in large-scale settings. Notably, the authors in [1] show that
despite the lack of convexity, the algorithm converges globally
to a set of stationary points of (1) and the rate of convergence
is at least sublinear. Recently, Zhang et al. [2] extend the fixed-
step-size algorithm to variable-step-size versions that empir-
ically improve the convergence speed of PGD. Nonetheless,
the authors prove that all limit points of the iterates converge
to the KKT points, no further result on the convergence speed
is provided.

Motivated by the aforementioned results, this manuscript
provides an in-depth convergence analysis of PGD for UMLS.
First, we observe in practice that the algorithm frequently
exhibits linear convergence near a local minimum of the prob-
lem. This is significantly faster than the sublinear convergence
proven in [1]. Second, the bounding technique in [1] is rather
conservative since it focuses on global characterization yet
ignores the local structure of the problem around the solution.
In particular, while UMLS is not a globally convex problem, it
can still possess a benign geometry around a local minimum.
In such a scenario, one can expect that PGD will converge
linearly to the local minimum similar to gradient descent for
unconstrained minimization of a smooth and strongly convex
function [10]. With this intuition, our goal here is to provide
an analytical framework to uncover the fast linear convergence
behavior of PGD near a local minimum of the UMLS prob-
lem.1 The UMLS problem is an instance of constrained least
squares (CLS) and the local convergence analysis for PGD
naturally follows from the unified framework in our previous
work [12]. Under a more general setting of the constraint set,
we showed the conditions for asymptotic linear convergence,
the convergence rate, and the region of convergence. However,
the application of the general theory in [12] needs to be

1Preliminary aspects of this work appeared in an earlier conference version
[11], where we study the local convergence of PGD for minimizing a quadratic
over the unit sphere. When N = 1, the UMLS problem and the spherically
constrained least squares problem coincide. For N > 1, UMLS introduces
a more complex constraint set in the form of the cross-product of multiple
spherical constraints.
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customized for each specific problem. As elaborated later in
Section III-A, this work analyzes a number of aspects that the
framework in [12] did not cover and offers a more concise
and elegant analysis route, skipping some steps used in [12].

Our contribution in this work is three-fold. First, by exploit-
ing the structure of the problem near local minima, we are able
to identify the sufficient conditions for local linear convergence
of PGD with a fixed step size and obtain an exact expression
of the convergence rate. Second, we establish the region of
convergence in which initializing the algorithm is guaranteed
to converge to the desired local minimum. The theoretical
rate predicts accurately the empirical convergence rate in our
numerical simulation. Third, in practical applications where
prior knowledge of the solution is not available, we propose
two adaptive-step-size variants of PGD that require the same
iteration complexity while offering faster linear convergence
compared to the optimal fixed step size in theory.

The rest of the paper is organized as follows. Section II
presents some motivating examples of the UMLS problem and
its real-valued formulation along with the PGD algorithm for
solving UMLS. Section III summarizes existing results on the
convergence of PGD for UMLS in the literature, highlighting
the fundamental similarity between the UMLS problem and
the spherically constrained least squares problem. Our con-
vergence analysis is presented in Section IV, including solu-
tion properties, algorithm properties, and linear convergence
properties. In Section V, we propose two variants of PGD
for UMLS that use adaptive step size schemes to effectively
obtain fast linear convergence without prior knowledge of
the solution. Finally, in Section VI, we perform numerical
experiments to verify our theoretical analysis.

Notation: Throughout the paper, we use the notations ∥·∥F
and ∥·∥2 to denote the Frobenius norm and the spectral norm
of a matrix, respectively. Additionally, ∥·∥ is used on a vector
to denote the Euclidean norm. Boldfaced symbols are reserved
for vectors and matrices. (·)∗, (·)⊤, and (·)H denote the
complex conjugate, the transpose, and the Hermitian transpose,
respectively The t× t identity matrix is denoted by It. The t-
dimensional vector of all zeros and the t-dimensional vector of
all ones are denoted by 0t and 1t, respectively. The notations
⊗ denotes the Kronecker product between two matrices and
vec(·) denotes the vectorization of a matrix by stacking its
columns on top of one another. For a complex number z,
ℜ(z) and ℑ(z) denote the real and imaginary parts of z,
respectively. Given an n-dimensional vector x, xi denotes
its ith element and diag(x) denotes the n × n diagonal
matrix with the corresponding diagonal entries x1, . . . , xn.
Given a matrix X ∈ Rm×n, the ith largest eigenvalue and
the ith largest singular value of X are denoted by λi(X)
and σi(X), respectively. The spectral radius of X is defined
as ρ(X) = maxi|λi(X)| and is less than or equal to the
spectral norm, i.e., ρ(X) ≤ ∥X∥2 [13]. If X is square
and invertible, the condition number of X is defined as
κ(X) = σ1(X)/σn(X). Finally, we use X ≻ 0 to indicate
the matrix X is positive definite (PD) and X ⪰ 0 to indicate
the matrix X is positive semi-definite (PSD).

II. PROBLEM STATEMENT

In this section, we present three applications that moti-
vate the use of unit-modulus least squares and proceed with
introducing fundamental concepts in formulating the UMLS
problem as a standard constrained least squares optimization
and the PGD algorithm for solving it.

A. Motivation

Phase-only Beamforming. In transmit beamforming, we wish
to design a weight vector w ∈ CN associated with N
antennas to enhance the transmission of the signals towards
certain directions while suppressing the transmission towards
other directions in an effort to avoid interference. For a
uniform linear array (ULA) of N antennas with M dis-
cretization of the angle space (see Fig. 1(a)), the goal is
to design a weight vector w such that it linearly combines
the signals from N antennas to form a desired output signal
ym = wHa(θm), for m = 1, 2, . . . ,M , where a(θ) =
[1, e−j 2π∆

λ sin θ, . . . , e−j(N−1) 2π∆
λ sin θ]⊤ is the steering vector

associated with θ ∈ [−π, π]. Here, λ is the wavelength and ∆
is the array spacing. In addition, modern beamforming applica-
tions often involve large-scale settings (e.g., massive multiple-
input-multiple-output (MIMO) systems) in which hardware
such as power amplifiers can be costly. It has been shown
[14], [15] that by constraining w to have constant modulus
(i.e., |wi| = 1 for all i = 1, . . . , N ), one can reduce hardware
complexity while still effectively produce the desired beam
patterns. Thus, the phase-only beamforming problem can be
formulated as a UMLS problem of (1)

min
w∈CN

1

2
∥Aw − y∥2

s.t. |wi|2 = 1 for i = 1, . . . , N, (2)

where A = [a(θ1),a(θ2), . . . ,a(θM )]⊤ and y =
[y1, y2, . . . , ym]⊤. Figure 1(b) illustrates an example of the
phase-only beamforming aimed towards one user in the di-
rection centered 0.
Phase Recovery. The phase recovery problem aims to find a
signal x ∈ Cn from the magnitude of its linear measurement
b = |Ax|, where A ∈ Cm×n where |·| is applied to a
vector elementwise. In [3], Waldspurger et al. proposed to
explicitly separate the amplitude and phase variables and only
optimize the values of the phase variables. By representing
Ax = diag(b)u, where u ∈ Cm satisfying |ui| = 1, for
i = 1, . . . ,m, the phase recovery problem is formulated as

min
x∈Cn,u∈Cm

1

2
∥Ax− diag(b)u∥2

s.t. |ui|2 = 1 for i = 1, . . . ,m. (3)

Minimizing the least squares w.r.t x yields x = A† diag(b)u,
where A† = (AHA)−1AH is the pseudo inverse of A, and
substituting back into (3) yields a standard UMLS problem

min
u∈Cm

1

2
∥(AA† − Im) diag(b)u∥2

s.t. |ui|2 = 1 for i = 1, . . . ,m. (4)
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Fig. 1: (a) Geometry of a uniform linear array. (b) Phase-only beamforming: forming a beampattern aimed towards the direction
[−π/60, π/60] by solving (2). The blue line represents the desired y with ym = 1 if −π/60 ≤ θm ≤ π/60 and ym = 0
otherwise. The red line represents the phase-only beamforming solution ŷ, where ŷm = |wHa(θm)|, for m = 1, . . . ,M .

Note that this problem maps to (1) with Φ = (AA† −
Im) diag(b) and h = 0.
Radar Code Design. We consider a monostatic radar system
that transmits a linearly encoded burst of pulses. The vector
model for the backscattered signal is given by [16]

v = α(c⊙ p) +w,

where α accounts for the channels propagation effects, w
denotes the noise component, c is the code vector, and p is the
temporal steering vector. Here, ⊙ is the Hadamard (element-
wise) product. Assuming that w is a zero-mean complex-
valued circular Gaussian vector with known positive definite
covariance matrix Σ = E[wwH ]. The signal-to-noise ratio
(SNR) is given by

SNR = |α|2cH
(
Σ−1 ⊙ (ppH)∗

)
c.

Our goal is to design the codes that optimize the SNR
of the radar system. Moreover, in many active sensing and
communication systems, these codes are often desired to be
unimodular as they have an optimal peak-to-average-power
ratio (PAR) [5]. Therefore, unimodular code design can be
formulated as a unit-modulus quadratic programming

min
c∈CN

|α|2cH
(
Σ−1 ⊙ (ppH)∗

)
c

s.t. |ci|2 = 1 for i = 1, . . . , N. (5)

Let Dp = diag(p) and Φ = |α|Σ−1/2Dp, then (5) can be
mapped to the UMLS problem (1) with h = 0.

B. Real-valued Formulation of the UMLS Problem

For the convenience of analysis, we consider the following
real-valued reparametrization of (1):

min
x∈R2N

1

2
∥Ax− b∥2

s.t. x2
2i−1 + x2

2i = 1 for i = 1, . . . , N, (6)

where A ∈ R2M×2N is partitioned into 2× 2 blocks of form

Ãij =

ℜ(Φij) −ℑ(Φij)

ℑ(Φij) ℜ(Φij)

 , (7)

for i = 1, . . . ,M and j = 1, . . . , N . In addi-
tion, x = [ℜ(w1),ℑ(w1), . . . ,ℜ(wN ),ℑ(wN )]⊤ and b =
[ℜ(h1),ℑ(h1), . . . ,ℜ(hM ),ℑ(hM )]⊤ are real-valued vectors.
Next, we introduce the concepts of the 2-selection operator
that selects the ith coordinate pair of a 2N -dimensional
vector. Since the unit-modulus constraint involves every pair
of coordinates of x, this operator allows us to simplify the
representation of our result throughout the rest of the paper:

Definition 1. For each i = 1, . . . , N , the ith 2-selection
operator is defined by Si : R2N → R2 such that

Si(x) =

x2i−1

x2i

 ,

where x = [x1, x2, . . . , x2N ]⊤.

It is noteworthy that the 2-selection operator is linear. Using
this operator, we can represent any vector x ∈ R2N as

x =

N∑
i=1

ei ⊗ Si(x), (8)

where ei is the ith vector in the natural basis of RN . Now we
define the constraint set of the UMLS problem (10) based on
the 2-selection operator.

Definition 2. The unit-modulus set is defined by

C = {x ∈ R2N : ∥Si(x)∥2 = 1,∀i = 1, . . . , N}. (9)

Using Definition 2, one can rewrite the optimization problem
(6) as follows

min
x∈C

1

2
∥Ax− b∥2. (10)

For convenience, we denote the objective f(x) = 1
2∥Ax−b∥2.
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Algorithm 1: Projected Gradient Descent (PGD)

Input: x(0) ∈ R2N

Output: {x(k)}k=0

1: for k = 0, 1, . . . do
2: x(k+1) = PC

(
x(k) − ηA⊤(Ax(k) − b)

)
3: ▷ where PC is defined in (13)

C. Projected Gradient Descent for UMLS

To define the projection onto the unit-modulus set C, let us
introduce the distance function from a point x ∈ R2N to C as

d(x, C) = inf
y∈C

{∥y − x∥}. (11)

The set of all projections of x onto C is then given by

ΠC(x) = {y ∈ C | ∥y − x∥ = d(x, C)}. (12)

It is well-known [17] that if C is closed, then for any x ∈ Rn,
ΠC(x) is non-empty. Additionally, since the unit-modulus set
C is non-convex, ΠC(x) can have more than one element.
An orthogonal projection onto C is defined as PC : R2N →
C such that PC(x) is chosen as an element of ΠC(x) based
on a prescribed scheme (e.g., based on lexicographic order).
In particular, we define the orthogonal projection PC(x) as
projecting each coordinate pair of x ∈ R2N onto the unit
1-sphere

Si

(
PC(x)

)
=

{
Si(x)

∥Si(x)∥ if Si(x) ̸= 02,

[1, 0]⊤≜ s if Si(x) = 02,
(13)

for i = 1, . . . , N , where Si(·) is given in Definition 1. It is
noted that when Si(x) = 02, the set of projections of 02 onto
the unit 1-sphere is non-singleton, i.e., the entire unit 1-sphere.
In such case, we choose a certain element s in this set (e.g.,
[1, 0]⊤) as the value of Si

(
PC(x)

)
. We emphasize that this

choice of projection does not affect our subsequent analysis
of local convergence.

Starting from some initial point x(0), the PGD algorithm
for solving (10) performs the following iterative update (see
Algorithm 1):

x(k+1) = PC
(
x(k) − ηA⊤(Ax(k) − b)

)
, (14)

where η > 0 is a fixed step size. In the literature, PGD is also
known as the gradient projection (GP) algorithm (e.g., [1]).

III. PRELIMINARIES

A. PGD for Constrained Least Squares

As mentioned in Section I, this work is a non-trivial
application of the unified convergence analysis framework in
[12]. In particular, we analyze a number of aspects that the
general framework did not cover and offer a more concise
and elegant analysis route, skipping some steps used in [12].
We establish the connection between the convergence of
PGD and fundamental properties of the problem, such as the
Riemannian Hessian H and the Lagrange multiplier γ (see
Table I). Here, the scale-invariance property of the projection
onto the unit-modulus set removes the need of analyzing the

regularity of the projection at z∗
η = x∗ − ηA⊤(Ax∗ − b)

as in [12], resulting in a more elegant analysis (see our
proof of Theorem 1 in Section IV-D). If we were simply
following the steps in the general framework, one needs to
extend the first-order expansion of the projection onto the
unit-modulus set to the case x ̸∈ C and continue the more
cumbersome derivation thereby. While in [12] we demonstrate
the simple spherically-constrained LS problem, this is not
straightforward for UMLS, considering that there are multiple
spherical constraints applying simultaneously on all pairs of
coordinates of the optimization variable. That said, the main
focus in this work is not on the refined analysis details but
more importantly on the outcome of the analysis for the
specific UMLS problem. The closed-form expression of the
rate as well as the connection between the convergence of
PGD and fundamental properties of the problem can be used as
a benchmark for analytical comparison with other algorithms
and help in better understanding their performance difference.

In [18], Luenberger et. al. considers the general case of
equality-constrained minimization:

min
x

f(x) s. t. h(x) = 0,

and study the asymptotic convergence of the geodesic descent
algorithm. In [18] - Eqn. (31), the authors provide the asymp-
totic rate of linear convergence (on the function side) as

ρ∗ =

(
A− a

A+ a

)2

,

where A and a are the largest and smallest eigenvalues of the
Hessian of the Lagrangian at the local solution x∗, restricted
to the tangent space to the constraint set at x∗. This result
has some similarities with our local convergence result in the
context of UMLS. First, both works consider an optimization
problem with equality constraints, where each hi(x) can be
viewed as ∥Si(x)∥2 − 1, for i = 1, . . . , N . Second, both
the algorithm considered in [18] and our PGD algorithm
utilize the first-order gradient information and the projection
operator onto the constraint set. Third, both analyses offer
linear convergence guarantees with the rates depending on
the local curvature of the problem at the solution. However,
we would like to highlight the differences between the two
results as follows. First, the algorithm considered in [18] is not
the same as the projected gradient descent algorithm used in
our work. In fact, Luenberger considers the geodesics descent
algorithm, which uses the projection of the gradient of the
objective function onto the tangent plane at x(k) as a descent
direction. Then, the algorithm performs an exact line search
to move along the corresponding geodesic of the constraint
surface. Compared to the geodesics descent algorithm, our
PGD algorithm is simpler as we first take a fixed step toward
the gradient of the objective function and then project it back
onto the constraint set. Second, since the geodesics descent
algorithm uses an exact line search scheme for the step size,
the rate of convergence is provided as the optimal rate that only
depends on the local curvature. On the other hand, our rate of
convergence depends on the step size η of PGD. Optimizing
our rate over η yields similar merit (see Eqn. (26)). Third,
the proof technique in [18] relies on Kantorovich’s inequality
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Fig. 2: Plot of ∥x(k+1)−x(k)∥ (blue solid) generated by PGD
for UMLS with a fixed step size η = 0.9/∥A∥22. The blue
dashed line represents the sublinear bound given by (15). The
red dashed line is based on our linear upper bound proposed in
this work. Further details of the data generated for this figure
are given later in our simulation in Section VI.

and the optimal property of exact line search (see Eqn. (54) in
[18]-Chapter 12). In this work, we follow a different path with
a fixed step size choice that linearizes the projection operator
in the neighborhood of the solution.

B. Existing Convergence Results on PGD for UMLS

The sublinear convergence of PGD to a set of stationary
points of UMLS was studied in [1]. First, Tranter et al.
showed that any limiting point x∗ of the sequence {x(k)}∞k=0

generated by Algorithm 1 is also a stationary point of (10).
Second, they proved that for PGD with a fixed step size
0 < η < 1/∥A∥22, the convergence of {x(k)}∞k=0 to a set
of stationary points of (10) is sublinear. In particular, the
authors provided a sublinear bound on the distance between
two consecutive iterates as follows2

min
0≤l≤k−1

∥x(l+1) − x(l)∥ ≤

√
2η

(
f(x(0))− f(x∗)

)
(1− η∥A∥22)k

. (15)

However, it is noted that the sublinear bound given by (15) is
based on the worst-case analysis. In practice, we observe the
algorithm enjoys fast linear convergence to a local minimum
x∗ of (10). Figure 2 illustrates the striking difference between
the sublinear bound on ∥x(k+1) −x(k)∥ given by the RHS of
(15) (blue dashed line) and the corresponding linearly converg-
ing empirical value obtained by running the PGD algorithm
(blue solid line). The additional bound on ∥x(k+1) − x(k)∥
(red dashed line) is derived from the bound on ∥x(k) − x∗∥
given by (25) in the next section and the application of triangle
inequality: ∥x(k+1) −x(k)∥ ≤ ∥x(k+1) −x∗∥+ ∥x(k) −x∗∥.
We observe that the red dashed line and the blue solid line
are parallel to each other, while the blue dashed line deviates
quickly from the other two lines as k increases. In the next

2We note that in [1], the authors actually derived the convergence bound
on a surrogate function Q(·) that quantifies the stationarity condition of (10).
From Eqn. (23b) in [1], we have the value of Q(·) at iteration k equals to
1
η2 ∥x(k+1) − x(k)∥2. In the literature, such convergence metric is related
to the generalized gradient norm, (e.g., [19]-Section 2.3.2).

section, we study this unexplained convergence phenomenon
of PGD for UMLS. We will provide exact formulations of the
linear convergence rate and the region of convergence. The
selection of the fixed step size 0 < η < 1/∥A∥22 in [1] is
conservative as it may exclude the optimal choice of η. We
will demonstrate in our simulation that larger step sizes enable
faster convergence of PGD for UMLS.

C. Least Squares with Unit-Norm Constraint

A closely-related problem to UMLS is the unit-norm least
squares (UNLS)

min
x∈RN

1

2
∥Ax− b∥2

s.t. ∥x∥2 = 1, (16)

where A ∈ RM×N and b ∈ RN . While UMLS requires each
of the N coordinate pairs of the solution lies on the unit 1-
sphere, UNLS requires the solution itself lies on the N − 1-
sphere. Unlike the case of unit-modulus constraint, minimizing
a quadratic form over the unit sphere is not NP-hard and is
solvable as an eigenvalue problem [20], [21]. The convergence
of PGD for UNLS has recently been studied in [11], [22].
Table I summarizes the existing convergence result on UNLS
and the new convergence result on UMLS we derive in this
paper, highlighting the connection between the two works.

IV. CONVERGENCE ANALYSIS

This section presents the convergence analysis of PGD for
UMLS. We begin with the properties of the solution of the
problem and the PGD algorithm. Next, we present the main
result on the convergence of PGD for UMLS. Finally, we
provide detailed proof at the end of the section.

A. Solution Properties

The Lagrange function corresponding to (10) is given by

L(x,γ) =
1

2
∥Ax− b∥2 − 1

2

N∑
i=1

γi(x
2
2i−1 + x2

2i − 1),

where γ ∈ RN is the Lagrange multiplier. The derivatives of
L with respect to x can be computed as{

∇xL(x,γ) = A⊤(Ax− b)− (diag(γ)⊗ I2)x,

∇2
xL(x,γ) = A⊤A− diag(γ)⊗ I2.

(17)

It can be shown that any feasible point x ∈ C is also a regular
point of the constraint set. Specifically, we first represent the
constraints as h : R2N → RN such that h(x) = 0N , where
hi(x) = ∥Si(x)∥2 − 1 for i = 1, . . . , N . Then, the Jacobian
of all the constraints at x, defined as Jij = ∂hi(x)/∂xj , is
given by

J(x) =


e⊤1 ⊗ S⊤

1 (x)

. . .

e⊤N⊗ S⊤
N(x)

 ∈ RN×2N .

3This is a more intuitive but not the most general constraint on the step size.
The original version of this condition on the step size is given in Theorem 1.
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Unit-norm constraint [11] Unit-modulus constraint (this work)

Problem formulation minx∈RN
1
2
∥Ax− b∥2 s.t. ∥x∥ = 1 minx∈R2N

1
2
∥Ax− b∥2 s.t. ∥Si(x)∥ = 1, ∀i = 1, . . . , N

First-order necessary condition ∃γ ∈ R : A⊤(A⊤x∗ − b) = γx∗ ∃γ ∈ RN : A⊤(Ax∗ − b) = (diag(γ)⊗ I2)x∗

Reduced Riemannian Hessian H = Z⊤A⊤AZ − γIN H = Z⊤A⊤AZ − diag(γ)

Second-order necessary condition H ⪰ 0N H ⪰ 0N

Second-order sufficient condition H ≻ 0N H ≻ 0N

Fixed-point condition on step size 1− ηγ > 0 IN − η diag(γ) ≻ 0N

Convergence condition on the step size η
(
λ1(H) + 2γ

)
< 2 η

(
λ1(H) + 2maxi γi

)
< 2 (3)

Linear convergence rate ρ
(
IN − η(1− ηγ)−1H

)
ρ
(
IN − η(IN − η diag(γ))−1H

)
TABLE I: Comparison between the existing convergence analysis of PGD for least squares with unit-norm constraint [11] and
the novel convergence analysis of PGD for unit-modulus constraint proposed in this paper. In each case, x∗ is a stationary
point and Z is a basis matrix for the null space of the Jacobian of all constraints at x∗.

Since J(x) is full row rank for any x ∈ C, x is a regular point
of the constraint set (see Chapter 11 in [18]). The following
lemma establishes the first-order necessary conditions for local
optima of UMLS problems.

Lemma 1. The first-order necessary conditions for x∗ ∈ R2N

to be a local minimum of (10) are x∗ ∈ C and there exists a
Lagrange multiplier γ ≜ γ(x∗) ∈ RN such that

A⊤(Ax∗ − b) = (diag(γ)⊗ I2)x
∗. (18)

Any point satisfying the foregoing first-order necessary condi-
tions is called a stationary point of (10).

By setting ∇xL(x,γ) in (17) to 0, the proof of Lemma 1
follows the same derivation in [18]-Chapter 11.3. Next, we
examine the second-order conditions for local optima of prob-
lem (10) via the basis of the tangent space to C at x∗. The
following lemma provides further insight into these conditions.

Lemma 2. Let x∗ be a stationary point of problem (10)
with the corresponding Lagrange multiplier γ. A basis of the
tangent space to C at x∗ is given by the semi-orthogonal
matrix Z ∈ R2N×N such that

Z =

N∑
i=1

eie
⊤
i ⊗ vi, (19)

where vi = [−x∗
2i, x

∗
2i−1]

⊤. Denote the reduced Riemannian
Hessian associated with x∗ by

H = Z⊤A⊤AZ − diag(γ). (20)

The second-order necessary condition for x∗ to be a local
minimum of (10) is H ⪰ 0N . The second-order sufficient
condition for x∗ to be a strict local minimum of (10) is H ≻
0N .

The proof of Lemma 2 is given in Supplementary Material -
Section A.

Remark 1. The concept of Riemannian Hessian has been
well-studied in differential geometry (e.g., [23]). From (20),
one can see that the first term takes into account the curva-
ture of the objective function restricted to the unit-modulus
manifold C. On the other hand, the second term characterizes
the curvature of the manifold C. While this is an elementary

result in differential geometry, we include the proof detail in
Supplementary Material - Section B for self-containedness.

B. Algorithm Properties

The PGD algorithm can be viewed as a fixed-point iteration
and hence, can be analyzed via the existing tools from fixed-
point theory. We first define the convergent point of the PGD
update (14) as follows.

Definition 3. The point x ∈ C is a fixed point of Algorithm 1
with step size η > 0 if it satisfies

x = PC
(
x− ηA⊤(Ax− b)

)
. (21)

If the constraint set C is convex, any fixed point of Algorithm 1
is also an optimal solution of the constrained least squares
problem [24]. Since the unit-modulus constraint set is non-
convex, we show that any fixed point of Algorithm 1 is a
stationary point of (10) as follows.

Lemma 3. The vector x∗ is a fixed point of Algorithm 1 with
step size η > 0 if and only if x∗ is a stationary point of
the non-convex problem (10) and the corresponding Lagrange
multiplier γ satisfies{

γi < 1/η if Si(x
∗) ̸= s

γi ≤ 1/η if Si(x
∗) = s

∀i = 1, . . . , N, (22)

where s is defined in (13).

The proof of this lemma is given in Supplementary Material -
Section C. Lemma 3 suggests that when η is sufficiently small,
all stationary points of (10) can be fixed points of Algorithm 1.
As the step size η increases, fewer stationary points satisfying
(22) can be fixed points of the algorithm. Next, we study the
first-order Taylor expansion of the projection PC about a point
in C.

Proposition 1. For any x ∈ C and δ ∈ R2N , we have

PC(x+ δ) = x+ZZ⊤δ + q(δ), (23)

where Z =
∑N

i=1 eie
⊤
i ⊗ vi, for vi = [−x2i, x2i−1]

⊤, and
q : R2N → R2N satisfies ∥q(δ)∥ ≤ 2∥δ∥2.

The proof of this proposition is given in Appendix A. It
is noteworthy from Proposition 1 that the projection PC is
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differentiable at any x ∈ C. Second, the derivative of PC ,
given by ZZ⊤, coincides with the orthogonal projection onto
the tangent space to C at x [25]. Third, the expansion (23) is
universal, regardless of the magnitude of δ.

C. Main Result

We are now in position to state our main result on the linear
convergence of PGD for UMLS.

Theorem 1. Consider a stationary point x∗ ∈ C of the
UMLS problem (10) with the corresponding Lagrange mul-
tiplier γ ≜ γ(x∗) ∈ RN defined in (18) and the reduced
Riemannian Hessian H ≜ H(x∗) ∈ RN×N defined in
(20). Let {x(k)}∞k=0 ⊂ R2N be the sequence generated by
Algorithm 1 with a fixed step size η > 0. Assume that

(C1) H ≻ 0N (sufficient condition for x∗ being a strict
local minimum),

(C2) ηγi ̸= 1 for all i = 1, . . . , N , and
(C3) ρ(Mη) < 1 where

Mη = IN − η
(
IN − η diag(γ)

)−1

H. (24)

Then, there exists a finite constant c0(x∗, η) (with a closed-
form expression given in Lemma 9) such that for any x(0) ∈ C
satisfying ∥x(0) − x∗∥ < c0(x

∗, η), the sequence {∥x(k) −
x∗∥}∞k=0 converges to 0. Furthermore, if ∥x(0) − x∗∥ <
ρ(Mη)c0(x

∗, η), it holds for any integer k ≥ 0 that

∥x(k) − x∗∥
∥x(0) − x∗∥

<

(
1− ∥x(0) − x∗∥

ρ(Mη)c0(x∗, η)

)−1

ρk(Mη). (25)

In (25), Algorithm 1 with fixed step size η is said to converge
linearly to x∗ with a rate of ρ(Mη). The ball of radius
c0(x

∗, η) centered at x∗ is called the region of convergence.

Theorem 1 suggests that PGD in Algorithm 1 initialized near
a strict local minimum as indicated by (C1) with a proper step
size η following the requirements in (C2) and (C3) converges
linearly to the local minimum. The theorem establishes three
key results for the linear convergence of Algorithm 1: the
region of convergence, the rate of convergence, and the bound
on the error through iterations. Notably, while the previous
result in [1] proves the sublinear convergence to a set of
stationary points of (10), our result in Theorem 1 shows the
linear convergence to a strict local minimum. It is worthwhile
mentioning that the linear convergence of {∥x(k) − x∗∥}∞k=0

given by (25) matches with the definition of R-linear conver-
gence in [26]-Appendix A.4

Note that Theorem 1 does not explicitly suggest an upper
bound on η that ensures convergence and it may appear that
PGD with arbitrarily large step size η still converges. However,
to ensure convergence, the implicit condition on η in (C3) must
hold. To provide an intuition for the step size requirement in

4Compared to Q-linear convergence, R-linear convergence concerns the
overall rate of decrease in the error, rather than the decrease over each
individual step of the algorithm. A more elaborate bound on the convergence
of non-linear difference equations of the form (72) is developed in [27], in
terms of the number of iterations to reach certain accuracy. In this work, we
use a simpler result in Lemmas 13 and 14 (given in Supplementary Material
- Section H) to demonstrate the linear convergence.

this condition, let us consider a more restrictive condition that
suffices (C3):

Lemma 4. Let η > 0 be a step size such that
(C3’) η(λ1(H) + 2γ) < 2, where γ = maxi γi.

Then, Condition (C3) in Theorem 1 holds, i.e., ρ(Mη) < 1.

The proof of Lemma 4 is given in Supplementary Material
- Section D. When λ1(H) + 2γ ≤ 0, any step size η > 0
satisfies (C3’) and hence, satisfies (C3). When λ1(H)+2γ >
0, (C3’) suggests an upper bound on η that is sufficient but not
necessary for (C3), i.e., η < 2/(λ1(H)+2γ). As can be seen
from Table I, Condition (C3’) is similar to the convergence
condition in the case of unit-norm constraint.

In Theorem 1, Condition (C3) suggest a non-linear relation-
ship between the convergence rate ρ(Mη) and the step size η.
In principle, one can find the optimal step size for local linear
convergence by solving the 1-D optimization

η∗ = argmin
η>0

ρ
(
Mη(x

∗)
)

= argmin
η>0

ρ
(
IN − η

(
IN − η diag(γ(x∗))

)−1
H(x∗)

)
.

(26)

In the last equation, we spell out the dependence on x∗ to
emphasize that the prior knowledge of the local minimum is
critical for determining the optimal step size. In Section V,
we propose two variants of PGD with adaptive step size
schemes that do not require prior knowledge of Mη to select
the optimal step size. The proposed algorithms enjoy the fast
convergence of PGD with a fixed optimal step size while
remaining the same computational complexity per iteration.

D. Proof of Theorem 1

This subsection presents a proof of Theorem 1, arranging
the key ideas into lemmas and deferring their proofs to the
appendix. Let us begin with the claim that the strict local
minimum x∗ in Theorem 1 is also a fixed point of PGD with
the appropriate choice of the step size η.

Lemma 5. Consider the same setting as Theorem 1. Assume
that Conditions (C1)-(C3) in Theorem 1 hold. Then, x∗ is a
fixed point of Algorithm 1 with the given step size η and its
corresponding Lagrange multiplier γ satisfies γi < 1/η, for
all i = 1, . . . , N .

The proof of Lemma 5 is given in Supplementary Material -
Section E. Next, we establish a recursion on the error vector,
based on the modulus scale-invariance property and the first-
order approximation of the projection in Proposition 1.

Lemma 6. Consider the same setting as Theorem 1. Assume
that Conditions (C1)-(C3) in Theorem 1 hold. Let Dη = (IN−
η diag(γ))−1 and δ(k) = x(k)−x∗ be the error vector at the
kth iteration of Algorithm 1. Then, for any integer k ≥ 0, we
have

δ(k+1) = ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

+ q
(
(Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

)
, (27)

where Z at x∗ and q are defined in Proposition 1.
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The proof of Lemma 6 is given in Supplementary Mate-
rial - Section F. Equation (27) can be viewed as an ap-
proximately linear dynamic on the error δ(k). As the er-
ror becomes sufficiently small, the residual term q((Dη ⊗
I2)(I2N − ηA⊤A)δ(k)) is negligible while the linear term
ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)δ(k) dominates. It has been
well-studied in the literature [11], [27]–[30] that the linear
convergence rate of (27) is the spectral radius of the linear
operator ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A). However, following
the argument about the structural constraint on the error vector
in [30], we emphasize the fact δ(k) = PC(x

∗+δ(k))−PC(x
∗)

is the difference between two points on the unit-modulus
manifold and show that the error vector is dominated by the
component on the tangent space to C at x∗.

Lemma 7. Consider the same setting as Theorem 1. At the
kth iteration of Algorithm 1, we have

δ(k) = ZZ⊤δ(k) + q(δ(k)), (28)

where Z at x∗ and q are defined in Proposition 1.

The proof of Lemma 7 is given in Supplementary Material
- Section G. Next, combining Lemmas 6 and 7, we obtain a
recursion on the error vector that implicitly enforces it to lie
on the tangent space to C at x∗ as follows.

Lemma 8. Consider the same setting as Theorem 1. As-
sume that Conditions (C1)-(C3) in Theorem 1 hold. Then by
Lemmas 6 and 7, the error vector at the kth iteration of
Algorithm 1 satisfies

δ(k+1) = ZMηZ
⊤δ(k) + q̂(δ(k)), (29)

where Z at x∗ is defined in Proposition 1, q̂ : R2N → R2N

satisfies ∥q̂(δ)∥ ≤ 2cη(cη + 1)∥δ∥2, and cη = ∥((IN −
η diag(γ))−1 ⊗ I2)(I2N − ηA⊤A)∥2.

The proof of Lemma 8 is given in Appendix B. Finally, we
show the convergence of {δ(k)}∞k=0 by recognizing that (i)
the spectral radius of ZMηZ

⊤ is the same as that of Mη and
(ii) the recursion (29) is an approximately linear difference
equation that is convergent for δ(0) sufficiently close to 02N .

Lemma 9. Consider the same setting as Theorem 1. Assume
that Conditions (C1)-(C3) in Theorem 1 hold. Let us define
γ = maxi γi, γ = mini γi and

c0(x
∗, η) =

1− ρ(Mη)

2cη(cη + 1)

1− ηγ

1− ηγ
, (30)

where cη is defined in Lemma 8. If ∥δ(0)∥ < c0(x
∗, η),

then the sequence {δ(k)}∞k=0 converges to 02N . Furthermore,
let c1(x

∗, η) = ρ(Mη)c0(x
∗, η). Then, for any ∥δ(0)∥ <

c1(x
∗, η) and integer k ≥ 0, we have

∥δ(k)∥ ≤
(
1− ∥δ(0)∥

c1(x∗, η)

)−1(1− ηγ

1− ηγ

)1/2

∥δ(0)∥ρk(Mη).

(31)

The proof of Lemma 9 is given in Appendix C. With this
lemma, we complete our proof of Theorem 1.

Algorithm 2: Backtracking PGD (Bt-PGD)

Input: x(0) ∈ R2N , α ∈ (0, 1], β ∈ (0, 1)
Output: {x(k)}k=0

1: η0 = 1
2: for k = 0, 1, 2, . . . do
3: gk = A⊤(Ax(k) − b)
4: ηk = ηk/β
5: repeat
6: ηk = βηk
7: g̃ηk

= (x(k) − PC(x
(k) − ηkgk))/ηk

8: until g̃⊤
ηk
A⊤Ag̃ηk

≤ 1
ηk
∥g̃ηk

∥2

9: x(k+1) = x(k) − ηkg̃ηk

10: ηk+1 = ηk/α

V. IMPLEMENTATION ASPECTS

This subsection describes two practical variants of PGD
with adaptive step size that can be used when no prior
knowledge of the solution is available: PGD with backtracking
line search (Algorithm 2) and Nesterov’s accelerated PGD
with adaptive restart (Algorithm 3).

A. Backtracking PGD (Bt-PGD)

In backtracking PGD, the step size is chosen to approxi-
mately minimize the objective function f(x) = 1

2∥Ax− b∥2
along the ray {x− ηg̃η | η > 0}, where

g̃η =
1

η

(
x− PC

(
x− ηA⊤(Ax− b)

))
is the generalized gradient. To guarantee certain decrease in
the objective function, we use the following backtracking
condition [19]

f(x− ηg̃η) ≤ f(x)− ηg̃⊤
η∇f(x) +

η

2
∥g̃η∥2. (32)

Since f(·) is a quadratic, it can be expanded as

f(x− ηg̃η) = f(x)− ηg̃⊤
η∇f(x) + η2g̃⊤

ηk
∇2f g̃ηk

. (33)

Substituting (33) back into the LHS of (32) and using the
fact that ∇2f = A⊤A, we obtain the simplified backtracking
condition g̃⊤

ηk
A⊤Ag̃ηk

≤ 1
ηk
∥g̃ηk

∥2 as in Algorithm 2-Line 8.
It is worthwhile to note that a factor of 1/α is applied
to increase the step size at the end of each iteration to
encourage the algorithm to explore larger step sizes with
faster convergence. We emphasize that this strategy is different
from the well-known backtracking line search method in the
literature (e.g., [31]), in which the step size η is reset to 1
before the backtracking line search is performed. As a result,
the constant α in Algorithm 2 should not be interpreted as
the fraction of the decrease in the objective function as in
[31]-Algorithm 9.2.

B. Adaptive Restart Nesterov’s Accelerated PGD (ARNAPGD)

Next, we present an acceleration technique for PGD, named
adaptive restart Nesterov’s accelerated projected gradient de-
scent (ARNAPGD). In unconstrained optimization, it has
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been well-known that Nesterov’s accelerated gradient (NAG)
[10] can dramatically improve the linear convergence rate of
gradient descent (GD) for minimizing a µ-strongly convex,
L-smooth function. As pointed out in [32]-Proposition 12,
GD with a fixed step size α = 1/L has convergence rate
ρ ≤

√
(L− µ)/(L+ µ), while NAG with fixed parameters

α = 1/L and β = (
√
L−√

µ)/(
√
L+

√
µ) has convergence

rate ρ ≤
√
1−

√
µ/L. Since NAG requires a specific choice

of parameters that depends on L and µ, O’Donoghue and
Candes [33] proposed a more practical variant called the
Nesterov’s accelerated gradient with adaptive restart (ARNAG)
that recovers the same rate of convergence with no prior
knowledge of function parameters. In order to adapt this
idea in the context of gradient descent for unconstrained
optimization to the context of projected gradient descent for
constrained optimization, we modify the original ARNAG
with a gradient scheme as follows. First, we utilize the
generalized gradient g̃η and the backtracking condition in (28)
for PGD to determine the gradient step size (see Lines 7-
10 in Algorithm 3). Second, we use the restart condition as
g̃⊤
ηk
(x(k+1) − x(k)) > 0 (see Lines 16-17 in Algorithm 3).

It is noted that in the original unconstrained optimization
context, the gradient scheme restarts whenever the momentum
term and the negative gradient are making an obtuse angle.
In our constrained optimization context, we restart when the
momentum seems to be taking us in a bad direction, as
measured by the negative of the generalized gradient at that
point. The advantage of this acceleration is it has the same
computational complexity per iteration as PGD and Bt-PGD5

while achieving significantly faster convergence rate. Further
details on ARNAPGD are provided in Algorithm 3. In the
next section, we compare the performance of PGD with a
fixed optimal step size, Bt-PGD, and ARNAPGD for UMLS.

VI. NUMERICAL EVALUATION

This section demonstrates the correctness of our theoreti-
cal result on the linear convergence of PGD for UMLS in
Theorem 1. We show through numerical simulation that our
predicted rate of convergence matches the decrease in the dis-
tance to the solution through iterations. Moreover, we illustrate
the effectiveness of the two variants of PGD with adaptive
step sizes proposed in Section V. For additional details, in
Supplementary Material - Section I, we present a simple 2-
D example of the region of convergence to demonstrate our
theoretical bound in (30).

A. PGD with a Fixed Step Size

Data generation. In the following, we create a UMLS setting
in which x∗ ∈ C satisfies{

A⊤(Ax∗ − b) = (diag(γ)⊗ I2)x
∗

H = Z⊤A⊤AZ − diag(γ) ≻ 0N

as follows. First, we generate two matrices ℜ and ℑ of size
M × N , where M = 50 and N = 40, with i.i.d normally

5The number of matrix-vector products in ARNAPGD is exactly the same
as that in Bt-PGD.

Algorithm 3: Adaptive restart Nesterov’s accelerated PGD
(ARNAPGD) with gradient scheme

Input: x(0) ∈ R2N , α ∈ (0, 1], β ∈ (0, 1)
Output: {x(k)}k=0

1: η0 = 1
2: θ0 = 1
3: y(0) = x(0)

4: for k = 0, 1, 2, . . . do
5: gk = A⊤(Ay(k) − b)
6: ηk = ηk/β
7: repeat
8: ηk = βηk
9: g̃ηk

= (y(k) − PC(x
(k) − ηkgk))/ηk

10: until g̃⊤
ηk
A⊤Ag̃ηk

≤ 1
ηk
∥g̃ηk

∥2

11: x(k+1) = y(k) − ηkg̃ηk

12: θk+1 = 2θk
θk+

√
θ2
k+4

13: βk+1 = θk(1− θk)/(θ
2
k + θk+1)

14: y(k+1) = x(k+1) + βk+1(x
(k+1) − x(k))

15: ηk+1 = ηk/α
16: if g̃⊤

ηk
(x(k+1) − x(k)) > 0 then

17: θk+1 = 1

distributed (N (0, 1)) entries. The matrix A is computed from
ℜ and ℑ using (7). Second, we generate a random vector
v ∈ RN with i.i.d normally distributed entries following
N (0, 0.12) and a random vector t ∈ {−1, 1}N with uniformly
distributed entries. Then, we obtain x∗ and γ by setting{

γi = ti∥Si(A
⊤v)∥

Si(x
∗) = Si(A

⊤v)/γi
for i = 1, . . . , N.

Next, the matrices Z and H are obtained by (19) and (20),
respectively. If H is not PD, we re-run the foregoing gener-
ation process multiple times until H ≻ 0N . This guarantees
Condition (C1) in Theorem 1 is satisfied. Finally, we compute
b = Ax∗ − v and initialize x(0) near x∗ by adding a
random noise with i.i.d normally distributed entries following
N (0, 0.0012) to x∗.6

Results. Figure 3(a) demonstrates the convergence rate ρ(Mη)
(blue solid line) as a function of the step size η. Recall that
Mη = IN − η(IN − η diag(γ))−1H and hence, ρ(Mη) is
a non-linear function of η. It can be seen from the plot that
ρ(Mη) approaches 1 (slow convergence) when η approaches
either 0 or ηmax = 2.44. The optimal step size that yields
the fastest convergence for PGD with a fixed step size is
η∗ = argminη>0 ρ(Mη) = 2.4328. Figure 3(b) shows the
convergence of PGD with various fixed step sizes. We observe
that for η > ηmax (the overlapping red and yellow solid
lines), the algorithm diverges from the designed strict local
minimum x∗. For step sizes less than ηmax, our theoretical
rate (dashed lines) matches well with the empirical rate (solid
lines). Moreover, PGD with the optimal step size η∗ converges
roughly twice as fast as one with the step size η = 1/∥A∥22

6For the purpose of demonstration, we use small additive noise to ensure
the algorithms converges locally to x∗.
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Fig. 3: Convergence of PGD with a fixed step size for UMLS. (a) Plot of the convergence rate ρ(Mη) as a function of the step
size η. The black dashed line is the line η = 1, emphasizing that the local convergence is guaranteed when ρ(Mη) < 1. The
blue star represents the maximum step size ηmax such that ρ(Mηmax

) = 1, while the blue hexagram represents the optimal
step size is η∗ = argminη>0 ρ(Mη). The purple dashed line connecting the blue hexagram and the point (0,1) is included
to demonstrate the non-linearity of ρ(Mη) for η ∈ (0, η∗). (b) Plot of the distance between the current update and the local
minimum as a function of the number of iterations for various fixed step sizes. Dashed lines represent the corresponding upper
bounds ∥x(k) − x∗∥ with exponential decay, i.e., ρk(Mη) up to a constant.

proposed in [1], suggesting that the latter choice, while being
commonly used in the literature, is conservative.

B. Adaptive Schemes for Step Size

To illustrate the role of α in exploring larger step sizes with
faster convergence while balancing the cost of backtracking
steps, we plot the error through iterations ∥x(k)−x∗∥ against
the number of matrix-vector products, which dominates the
computational complexity per iteration, in Fig. 4. The data
used in this simulation is the same as in the previous section.
While the smaller values of α seem to yield faster convergence
(see Fig. 4(a)), they indeed require more backtracking steps
at each iteration (see Fig. 4(b)). As a result, the overall
computation is higher for smaller values of α. It can be seen
from Fig. 4(c) that the best choice of α is α = β = 0.8.
In addition, we observe that the total cost of Bt-PGD is
comparable to that of PGD with the optimal fixed step size.
However, Bt-PGD does not use any prior knowledge about the
solution x∗. Fig. 4(d) shows the fluctuation in the step size η
around the optimal value η∗ = 2.4328. It is interesting to note
that even though η > ηmax at some iterations, the algorithm
can converge to the designed local minimum x∗.

Figure 5 compares the performance of four algorithms in
solving the foregoing UMLS setting: PGD with a fixed step
η = 1/∥A∥22 (used in [1]), PGD with a fixed optimal step η∗

(given by (26)), Bt-PGD with the optimal choice α = β = 0.8
(Algorithm 2), and ARNAPGD (Algorithm 3). The data used
in this simulation is the same as in the previous section. We
observe that all three algorithms proposed in this work out-
perform PGD with the commonly used step size η = 1/∥A∥22
(blue solid line). It is also highlighted that ARNAPGD (purple
solid line) obtains significantly faster convergence compared

to the other algorithms while remaining similar computational
complexity per iteration. The overlap between the red solid
line and the yellow solid line in Fig. 5 indicates that bt-PGD
recovers the optimal rate of convergence. Finally, we note
that both Algorithm 2 and Algorithm 3 do not come with
convergence guarantees in our setting since C is non-convex.
Nonetheless, on the practical side, they do not require prior
knowledge of the solution and their effectiveness is depicted
clearly through our numerical results.

C. Phase-only Beamforming

This section demonstrates the performance of our proposed
algorithms in the phase-only beamforming example in Sec-
tion II-A. Due to potential differences in magnitude between
y and Aw, we consider a scaled version of (2)

min
w∈CN ,s∈C

1

2
∥Aw − sy∥2

s.t. |wi|2 = 1 for i = 1, . . . , N. (34)

By differentiating the objective function w.r.t s and setting
the resulting gradient to zero, we can obtain the optimal s
in terms of w as s∗ = yHAw/∥y∥2. Substituting this s∗

and simplifying yields the following alternative equivalent
optimization

min
w∈CN

1

2
wHAH

(
IM − yyH

∥y∥2
)
Aw

s.t. |wi|2 = 1 for i = 1, . . . , N. (35)

It is noted that our formulation is similar to the auto-scaling
formulation in [1]. However, their approach considers an
automatic normalization of Aw and employs an alternating
minimization w.r.t. w and s. On the other hand, our approach
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Fig. 4: Convergence of Bt-PGD with various values of α and a fixing value of β = 0.8. (a) Plot of the distance from the
current update of Bt-PGD to the local minimum as a function of the number of iterations. A dashed blue line is included as an
illustration of the convergence of PGD with the fixed optimal step size η∗. (b) Plot of the number of matrix-vector products
used by Bt-PGD as a function of the number of iterations. (c) Plot of the distance from the current update of Bt-PGD to the
local minimum as a function of the number of matrix-vector products. (d) Plot of the backtracking step size η as a function of
the number of iterations for Bt-PGD with α = β = 0.8. A zoom-in plot is included on top of the original plot for enhanced
visualization. After a few thousand iterations, we observe that the adaptive step size ηk fluctuates around the optimal step size
η∗ = 2.4328 (red dashed line).

considers an optimal scaling of y and in the following, we
will reformulate it as a standard UMLS problem. Given any
solution w∗ of problem (35), ejϕw∗ is also a solution, for
any angle ϕ. Thus, for the uniqueness of the solution, we
assume that w1 = eH1 w = 1. Let Ē1 = [e2, . . . , eN ] be the
N × (N − 1) matrix such that w̃ ≜ ĒH

1 w = [w2, . . . , wN ]⊤.
Then, (35) can be reformulated as

min
w̃∈CN

1

2
w̃HĒH

1 AH
(
IM − yyH

∥y∥2
)
AĒ1w̃

+ ℜ
(
eH1 AH

(
IM − yyH

∥y∥2
)
AĒ1w̃

)
s.t. |w̃i|2 = 1 for i = 1, . . . , N. (36)

Let IM − yyH/∥y∥2 = QQH , for Q ∈ CM×(M−1) and
QHQ = IM−1, (36) is equivalent to the following constrained
least squares

min
w̃∈CN

1

2
∥Ãw̃ − ỹ∥2 s.t. |w̃i|2 = 1 for i = 1, . . . , N, (37)

where Ã = QHAĒ1 ∈ C(M−1)×(N−1) and ỹ = −QHAe1 ∈
CM−1. Note that both the non-scaled version (2) and the
scaled version (37) of the phase-only beamforming problem
fall under the UMLS setting.

We study the convergence of Algorithms 1, 2, and 3 with
a ULA scenario with N = 50 antennas and the angle space
[−π/2, π/2] discretized into M = 800 regions. The target
direction is the range [−π/60, π/60], with the desired output
vector y satisfying ym = 1 if −π/60 ≤ θm ≤ π/60 and
ym = 0 otherwise, for m = 1, . . . ,M . As a sanity check, we
also include the variable step size gradient projection (VSGP)
in the comparison. We note that this is an adaptive step size
variant of PGD proposed in [2] for solving constant-modulus
least squares (CMLS). While VSGP was shown to converge to
a KKT point of the CMLS problem, no further analysis of the
convergence speed is presented in [2]. In our implementation,
we use two different values of the shrinking parameter µ in
VSGP, which are 0.3 (used in [2]) and 0.8 (our tuned value).
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Fig. 5: Plot of the distance from the current update to the local
minimum x∗ as a function of the number of iterations, for four
algorithms: PGD with a fixed step η = 1/∥A∥22 [1] (blue solid
line), PGD with a fixed optimal step η∗ given by (26) (red
solid line), Bt-PGD with α = β = 0.8 (yellow solid line),
and ARNAPGD (red solid line). Dashed lines represent the
corresponding upper bounds on ∥x(k) − x̂∥ with exponential
decay, i.e., ρk(Mη) up to a constant. All algorithms have the
same computational complexity per iteration.
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Fig. 6: Plot of the distance from the current update to the local
minimum x̂ 7, for five algorithms: PGD with a fixed step η =
1/∥A∥22 [1] (blue solid line), PGD with a variable step size -
VSGP [2] with µ = 0.3 (red solid line) and µ = 0.8 (yellow
solid line), Bt-PGD with α = β = 0.8 (purple solid line),
and ARNAPGD (green solid line). Dashed lines represent the
corresponding upper bounds on ∥x(k) − x̂∥ with exponential
decay, i.e., ρk(Mη) up to a constant. All algorithms share the
same computational complexity per iteration.

In this simulation, since no ground truth solutions are
available, we use the convergent point of ARNAPGD x̂ as an
approximation of x∗ and measure the distance from the current
update to x̂ as the error through iterations. As can be seen
from Fig. 6, all algorithms exhibit linear convergence, with
the fixed-step-size PGD being the slowest and ARNAPGD
being the fastest. The VSGP and Bt-PGD algorithms have
a similar rate of linear convergence, both approaching the

7Since the true optimum x∗ is not unknown, we use x̂ as an approximation
of x∗ with the KKT error 10−12.

optimal rate of convergence for fixed step size PGD. However,
VSGP seems to stop early and converge to a different solution
than other algorithms. This can be explained by the effect of
the shrinking parameter µ for the step size in VSGP, making
it smaller through iterations. Comparing VSGP with µ = 0.3
(red solid line) and µ = 0.8 (yellow solid line), we observe
that the error in the former converges to around 10−5 while
the error in the latter converges to around 10−10. In contrast,
our bt-PGD algorithm increases the backtracking step size by a
factor of 1/α at each iteration. Finally, it is highlighted that our
upper bound in (25) predicts well the rate of convergence for
both fixed-step-size PGD (η = 1/∥A∥2) and Bt-PGD (nearly-
optimal step size).

VII. CONCLUSION AND FUTURE WORK

We introduced a novel analysis of linear convergence of
projected gradient descent for the unit-modulus least squares
problem. Our analysis reveals that near strict local minima, the
convergence is linear as opposed to sublinear as suggested in
[1]. Moreover, we identified the sufficient conditions for linear
convergence and provided an exact expression of the linear
convergence rate. The theoretical rate predicts accurately the
asymptotic convergence of PGD for UMLS in our numerical
simulation. On the practical side, we propose two variants
of PGD with adaptive step sizes that obtain fast convergence
without prior knowledge about the solution.

For future work, we plan to improve our bound on the
region of convergence. This requires further investigation into
the bounding techniques used in the proof of Theorem 1.
Another potential direction is to develop the analysis for linear
convergence of Bt-PGD and ARNAPGD. While convergence
guarantees for backtracking line search and Nesterov’s ac-
celerated gradient have been proposed in the optimization
literature [10], [31], they often involve the spectral radius that
depends linearly on the step size η. The UMLS problem, on the
other hand, involves the spectral radius ρ(Mη) that depends
non-linearly on η. This makes it challenging for determining
closed-form expressions of the optimal step size in both plain
PGD and accelerated PGD.

APPENDIX A
PROOF OF PROPOSITION 1

The proof of this lemma is based on the following result
for the projection onto the unit sphere [12]:

Lemma 10. (Rephrased from Lemma 5 in [12]) Let x be a
point on the unit sphere Sn−1. Then, for any δ ∈ Rn, the
projection onto Sn−1 satisfies

PSn−1(x+ δ) = x+
(
I − xx⊤)δ + qSn−1(δ), (38)

where ∥qSn−1(δ)∥ ≤ 2∥δ∥2.

Applying Lemma 10 to the 1-D unit circle S1 (corresponding
to the case n = 2), we have, for each i = 1, . . . , N ,

Si

(
PC(x+ δ)

)
= PS1

(
Si(x+ δ)

)
= PS1

(
Si(x) + Si(δ)

)
= Si(x) +

(
I2 − Si(x)(Si(x))

⊤)Si(δ) + qS1

(
Si(δ)

)
= Si(x) + viv

⊤
i Si(δ) + qS1

(
Si(δ)

)
,
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where vi = [−x2i, x2i−1]
⊤. Using the property of the 2-

selection operator in (8), we further have

PC(x+ δ) =

N∑
i=1

ei ⊗ Si

(
PC(x+ δ)

)
=

N∑
i=1

ei ⊗
(
Si(x) + viv

⊤
i Si(δ) + qS1

(
Si(δ)

))
=

N∑
i=1

ei ⊗ Si(x) +

N∑
i=1

(ei ⊗ viv
⊤
i )Si(δ) + q(δ)

= x+ZZ⊤δ + q(δ), (39)

where q(δ) satisfies Si(q(δ)) = qS1(Si(δ)) and

∥q(δ)∥2 =

N∑
i=1

∥Si(q(δ))∥2 =

N∑
i=1

∥qS1(Si(δ))∥2

≤
N∑
i=1

(
2∥Si(δ)∥2

)2 ≤
( N∑
i=1

2∥Si(δ)∥2
)2

= 4
( N∑
i=1

(δ22i−1 + δ22i)
)2

= 4
( 2N∑
j=1

δ2j
)2

= 4∥δ∥4.

This completes our proof of the lemma.

APPENDIX B
PROOF OF LEMMA 8

Substituting (28) back into the first term on the RHS of
(27), we have

δ(k+1) = ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)ZZ⊤δ(k)

+ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)q(δ(k))

+ q
(
(Dη ⊗ I2)(I2N − ηA⊤A)δ(k)

)
. (40)

From Lemma 11 in Supplementary Material - Section H and
the fact that Z⊤Z = IN , we can represent (40) as

δ(k+1) = ZDηZ
⊤(I2N − ηA⊤A)ZZ⊤δ(k) + q̂(δ(k))

= ZDη(IN − ηZ⊤A⊤AZ)Z⊤δ(k) + q̂(δ(k)), (41)

where q̂(δ) = ZZ⊤(Dη⊗I2)(I2N −ηA⊤A)q(δ)+q
(
(Dη⊗

I2)(I2N −ηA⊤A)δ
)
. Recall that H = Z⊤A⊤AZ−diag(γ).

Thus, (41) is equivalent to

δ(k+1) = ZDη(IN − η diag(γ)−H)Z⊤δ(k) + q̂(δ(k))

= Z(IN − ηDηH)Z⊤δ(k) + q̂(δ(k)). (42)

Substituting Mη = IN − ηDηH into (42) yields (29).
To bound the norm of q̂(δ(k)), we use the triangle inequality

and the product norm inequality as follows

∥q̂(δ)∥ ≤ ∥ZZ⊤(Dη ⊗ I2)(I2N − ηA⊤A)q(δ)∥
+ ∥q

(
(Dη ⊗ I2)(I2N − ηA⊤A)δ

)
∥

≤ ∥ZZ⊤∥2∥(Dη ⊗ I2)(I2N − ηA⊤A)∥2∥q(δ)∥
+ ∥q

(
(Dη ⊗ I2)(I2N − ηA⊤A)δ

)
∥.

Since ∥q(δ)∥ ≤ 2∥δ∥2 (see Proposition 1) and cη = ∥(Dη ⊗
I2)(I2N − ηA⊤A)∥2, we further obtain

∥q̂(δ)∥ ≤ ∥ZZ⊤∥2cη2∥δ∥2 + 2∥(Dη ⊗ I2)(I2N − ηA⊤A)δ∥2

≤ 2cη∥ZZ⊤∥2∥δ∥2 + 2c2η∥δ∥2

≤ 2cη∥δ∥2 + 2c2η∥δ∥2,

where the last inequality stems from ∥ZZ⊤∥2 ≤ 1 since ZZ⊤

is an orthogonal projection matrix. This completes our proof
of the lemma.

APPENDIX C
PROOF OF LEMMA 9

The proof in this section relies on Lemma 8 in the
manuscript and Lemmas 12 and 13 in Supplementary Material
- Section H. Let δ̃(k) = (D

−1/2
η ⊗ I2)δ

(k). Left-multiplying
both sides of (29) with (D

−1/2
η ⊗ I2), we have

δ̃(k+1) = (D−1/2
η ⊗ I2)ZMηZ

⊤δ(k) + (D−1/2
η ⊗ I2)q̂(δ

(k))

= (D−1/2
η ⊗ I2)ZMηZ

⊤(D1/2
η ⊗ I2)δ̃

(k)

+ (D−1/2
η ⊗ I2)q̂

(
(D1/2

η ⊗ I2)δ̃
(k)

)
. (43)

Using Lemma 11 in Supplementary Material - Section H and
substituting Mη = IN − ηD−1

η H into the RHS of (43) yield

δ̃(k+1) = ZD−1/2
η (IN − ηD−1

η H)D1/2
η Z⊤δ̃(k) + q̃(δ̃(k))

= Z(IN − ηD−1/2
η HD−1/2

η )Z⊤δ̃(k) + q̃(δ̃(k)),
(44)

where q̃(δ̃(k)) = (D
−1/2
η ⊗ I2)q̂((D

1/2
η ⊗ I2)δ̃

(k)) satisfies

∥q̃(δ̃(k))∥ ≤ ∥D−1/2
η ⊗ I2∥2∥q̂((D1/2

η ⊗ I2)δ̃
(k))∥

= ∥D−1/2
η ∥2∥q̂

(
(D1/2

η ⊗ I2)δ̃
(k)

)
∥

≤ ∥D−1/2
η ∥22cη(cη + 1)∥(D1/2

η ⊗ I2)δ̃
(k)∥2

≤ 2cη(cη + 1)∥D−1/2
η ∥2∥D1/2

η ⊗ I2∥22∥δ̃(k)∥2

≤ 2cη(cη + 1)∥D−1/2
η ∥2∥D1/2

η ∥22∥δ̃(k)∥2

= 2cη(cη + 1)(1− ηγ)1/2(1− ηγ)−1∥δ̃(k)∥2,

where the last equality stems from ∥D−1/2
η ∥2 = (1− ηγ)1/2

and ∥D1/2
η ∥2 = (1 − ηγ)−1/2. Let q = 2cη(cη + 1)(1 −

ηγ)1/2(1− ηγ)−1. Taking the norm of both sides of (44) and
then using the triangle inequality on the RHS, we obtain

∥δ̃(k+1)∥ = ∥Z(IN − ηD−1/2
η HD−1/2

η )Z⊤δ̃(k) + q̃(δ̃(k))∥
≤ ∥Z(IN − ηD−1/2

η HD−1/2
η )Z⊤δ̃(k)∥+ ∥q̃(δ̃(k))∥.

Since Z(IN−ηD
−1/2
η HD

−1/2
η )Z⊤ is symmetric, its spectral

norm equals to its spectral radius. The last inequality can be
rewritten as

∥δ̃(k+1)∥ ≤ ρ
(
Z(IN − ηD−1/2

η HD−1/2
η )Z⊤)∥δ̃(k)∥

+ q∥δ̃(k)∥2. (45)

Moreover, it can be seen from (44) that Z(IN −
ηD

−1/2
η HD

−1/2
η )Z⊤ = (D

−1/2
η ⊗ I2)ZMηZ

⊤(D−1/2
η ⊗

I2
)−1

, which in turns implies the two matrices Z(IN −
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ηD
−1/2
η HD

−1/2
η )Z⊤ and ZMηZ

⊤ are similar and have the
same spectral radius. In particular, we have

ρ
(
Z(IN − ηD−1/2

η HD−1/2
η )Z⊤) = ρ(ZMηZ

⊤)

= ρ(Mη), (46)

where the second equality stems from Lemma 12 in Supple-
mentary Material - Section H. Substituting (46) into the RHS
of (45), we obtain

∥δ̃(k+1)∥ ≤ ρ(Mη)∥δ̃(k)∥+ q∥δ̃(k)∥2.

Applying Lemma 14 with bk = ∥δ̃(k)∥, ρ = ρ(Mη), and
c = (1− ηγ)1/2c1(x

∗, η), it holds that if ∥δ̃(0)∥ < c, then

∥δ̃(k)∥ ≤
(
1− ∥δ̃(0)∥

c

)−1

∥δ̃(0)∥ρk(Mη). (47)

Recall that δ(k) = (D
1/2
η ⊗I2)δ̃

(k). On the one hand, the LHS
of (47) can be lower-bounded as ∥δ̃(k)∥ ≥ (1− ηγ)1/2∥δ(k)∥,
due to the fact that

∥δ(k)∥ = ∥(D1/2
η ⊗ I2)δ̃

(k)∥ ≤ ∥D1/2
η ⊗ I2∥2∥δ̃(k)∥

= ∥D1/2
η ∥2∥δ̃(k)∥ = (1− ηγ)−1/2∥δ̃(k)∥.

On the other hand, the RHS of (47) can be upper-bounded as
follows. Since

∥δ̃(0)∥ = ∥(D−1/2
η ⊗ I2)δ

(0)∥ ≤ ∥D−1/2
η ⊗ I2∥2∥δ(0)∥

= ∥D−1/2
η ∥2∥δ(0)∥ = (1− ηγ)1/2∥δ(0)∥, (48)

we have(
1− ∥δ̃(0)∥

c

)−1

∥δ̃(0)∥ρk(Mη)

≤
(
1−

(1− ηγ)1/2∥δ(0)∥
c

)−1

(1− ηγ)1/2∥δ(0)∥ρk(Mη)

=

(
1− ∥δ(0)∥

c1(x∗, η)

)−1

(1− ηγ)1/2∥δ(0)∥ρk(Mη). (49)

From the lower bound (1−ηγ)1/2∥δ(k)∥ and the upper bound
in (49), we obtain (31). Finally, the region of convergence
∥δ(0)∥ < c1(x

∗, η) is sufficient to guarantee that ∥δ̃(0)∥ <
c = (1 − ηγ)1/2c1(x

∗, η) due to (48). This completes our
proof of the lemma.
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